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ABSTRACT

An approximate analytical solution is obtained for hypersonic flow

past a slender elliptic cone at small angle of attack. The analysis is

based on perturbations of hypersonic flow past a circular cone aligned

AN S

with the free stream, the perturbations stemming from the 1inear combina-

tion of small angle of attack and small cross-section eccentricity.
means of previously obtained hypersonic approximations for the basic-

cone problem, closed-form approximate solutions for the perturbation

equations are obtained within the framework of hypersonic small-disturbance

theory. Results for the shock shape, shock-layer structure, and surface

conditions are presented, together with comparisons with experimental

data.
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APPROXIMATION FOR HYPERSONIC FLOW

PAST AN ELLIPTIC CONE

1. INTRODUCTION

For supersonic flows past bodies without axial symmetry, the ellip-
tic cone is a basic body shape. Its counterpart, the circular cone, is
a basic axisymmetric body shape with flow field properties that are exten-
sively tabulated. Even the supersonic flow past a circular cone at small
angle of attack is extensively tabulated and fairly well understood. On
the other hand, the properties of the supersonic flow field past an
elliptic cone are not extensively tabulated, at least in comparison with
the circular cone at angle of attack. Although numerous papers have been
directed towards supersonic flows past elliptic cones, their goals have
been specific, and no general or comprehensive flow field calculations
have been set forth. The purpose of this work is to partially remedy
this situation and to present an approximate analytic solution that
illustrates the general flow field features of hypersonic flow past a
slender elliptic cone with small eccentricity.

Supersonic flow past slender cones with arbitrary cross section can
be treated with some generality by means of linearized theory [1], and
linearized theory can be extended to second order [2] to account some-
what for weak nonlinear effects. These results, however, are frequently
not appropriate for the hypersonic Mach numbers and flow deflections of

practical concern.

Another approach to the problem deals with flows that deviate slightly

from the basic axisymmetric flow past a circular cone. The so-called

)
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scheme of linearized characteristics was applied by Ferri, Ness, and

Kaplita [3] to several conical bodies with non-axisymmetric cross sec-
tions. This method is subject to a number of criticisms for cross-sec-
tion areas that deviate significantly from circles [4], and thus a modi-
fication of the linearized characteristics method was applied to elliptic
cones at angle of attack by Martellucci [5]. In the above use of the
linearized characteristics method, the perturbation equations were

solved numerically. Chapkis [6], applying the linearized characteristics
method, used hypersonic approximations for the basic cone flow to obtain
relatively simple specific results for an elliptic cone.

Besides the above methods of computation, there are numerical schemes
for integrating the complete governing gas dynamic equations. Two notable
schemes applied to elliptic cones are those of Stocker and Mauger [7]
and Babenko et al,[8]. There are also semi-empirical methods for deal-
ing with certain features of supersonic flows past elliptic cones, such
as tangent-cone methods, equivalent circular-cone methods, and the method
of Kaattari [9]. Whichever method has been utilized to date, the general
features of the supersonic flow field past an elliptic cone, showing
effects of Mach number, cone angle, and ellipse eccentricity on the shock
shape, the shock-layer structure, and the surface conditions, have not
been delineated.

In this undertaking, we wish to start with the small-perturbation
equations for perturbed flow past a basic circular cone at zero angle
of attack and take the approach of Chapkis [6] for the elliptic cone.

We shall use improved approximations for the basic cone flow [10,11] and
obtain approximate analytical solutions for the perturbation equations.
The analysis is analogous to that of Doty [12] and Doty and Rasmussen [13]

for obtaining approximations for hypersonic flow past circular cones at
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small angle of attack, which were shown to be very accurate. The
analysis is cast in the form of hypersonic similarity theory, and the
results are presented in appropriate similarity form.
The perturbation expansions involve a small parameter for the angle
of attack and for the measure of the eccentricity of the ellipse cross
section. These expansions are not uniformly valid in a thir vortical
layer adjacent to the cone surface. It can be shown [14,15], however,
that at least the pressure and azimuthal velocity component are valid
across the vortical layer. Since these two variables are of most importance,

further consideration of the vortical layer will not be undertaken.

T —— e e
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2. UNYAWED ELLIPTIC CONE BODY AND SHOCK GEOMETRY

2.1 Body Geometry

In

unyawed

where a

rectangular Cartesian coordinates, as shown in Fig. 2.1, the

elliptic cone body is represented by

2 2
L ST (2.1)
azz2 bzz2

= tan 8, and b = tan 8y, are the tangents of the semivertex

angles of the semiminor and semimajor axes of the elliptic cone. In

terms of spherical polar coordinates, also shown in Fig. 2.1, equation

(2.1) can be rewritten as

where

tan em
tan 6 = (2.2)
v 1 + e cos 2¢
tan 6 = ——KZJﬂQ——— = b/l-e = a/l+e (2.3a)
a +b

5B (]_e2)1/4

2

2

b~ - a
€ =5—x (2.3b)
b2 + a

!

The parameter e is a measure of the eccentricity of the elliptic cone.

The first three terms of the Fourier-series representation of equation

(2.2) are given by

where

tan o = tan 6 [Ao + A2 cos 2¢ + A4 cos 44 *+ ...] (2.4)
A = 2 Kk) (2.5a)
O T v
By s —5—4——— [(2-k%) K(k) - 2E(K)] (2.5b)
k& /T+e

o




Figure 2.1

Basic Cone §gE S

Perturbed Cone: 8 = & - € cos 24

Basic Shock
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Perturbed Shock :
8 =8 + aE cos ¢ - €9 cos 24
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Cone Coordinates and Geometry




and /2

E(k)zJ 1 - k%sinu  du (2.5¢)
0
m/2

K(k)sf o S e (2.5f)

0 /1 - kzsin u

are the complete elliptic integrals of the first and second kinds. For

small values of the eccentricity, e, the Fourier coefficients can be ex-

panded as
Ay =1+ ]36 e? + o(eh) (2.6a)
Ay =-S5 01+ e +o(eh)] (2.6b)
M3 [+ 2?40t (2.6c)

When the eccentricity, e, is small the successive Fourier coefficients
become smaller and smaller. For sufficiently small e, the Fourier coeffi-
cients for the higher harmonics can be n;glected.

We can expand equation (2.4) for 6 in a Fourier expansion and ob-

tain for small eccentricities

6 =6 -¢c cos 26 + 0(c?) (2.7)
where A A2
- -1 02 .. 4
§ = tan (Ao tan em) v e STH 2 O * 0(e™)
=e+ez[3 2 sin%s ] sin 26 + 0(e%) (2.8a)
=0, + 35 [3 - 2sin ]sin 26, e .8a
A2 tan e 2 A22

ezt
]+A2tan2

6

3 e 2 + Ay) smze ey (1+3A2) sin"‘em + 0(e4)]




€= %-[1 + ez{%g - %-sinzem + %-sin4em} +0(e*)] sin 2 8 (2.8b)

The parameter ¢ is a new measure of the eccentricity and is the appropriate
parameter to be used in the subsequent analysis. The parameter § specifies
the semivertex angle of the basic circular cone about which a perturbation
analysis is to be performed.

Comparison of the two-term approximation (2.7) with the exact equa-
tion (2.2) for the elliptic cone is shown in Fig. 2.2. When a = 0.2555
and b = 0.3562, such that e = 0,320 and em = 16.30°, the two-term approx-
imation gives a good representation of the actual ellipse. When a = 0.2256
and b = 0.4034, such that e = 0.523 and B, = 15.56°, the representation
is not as good, but still a reasonble approximation when precise accuracy

is not paramount.

2.2 Shock Geometry
The conical shock wave attached to the elliptic cone is assumed to
have the form (for a = 0)

«

6 = B8 - €9 COS 26 + O(ez) s (2.9)

which is analogous to equation (2.7) for the body shape. Here g is the
semivertex angle of the basic circular shock corresponding to the basic
body with semivertex angle §, The factor g is to be determined from the
perturbation analysis. It,in effect,represents the deviation of the shock
eccentricity from the body eccentricity.

By means of vector analysis, we find the unit outward normal on the

shock to be given by

~

s s o2e958in2¢ 2 2
ng = e, Ty e, + 0(e%) (2.10)

This result is needed to establish the shock jump conditions.

At ——
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a = 0.2555
b = 0.3562
e = 0.320

(-1}
([}

0.2256 ——
0.4034
0.523
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Figure 2.2 Two-Term Fourier Representation of the Ellipse




3. BOUNDARY CONDITIONS

3.1 Expansions for the Flow Variables
Let the velocity vector for conical flow be represented in spherical
coordinates by

->

V= u(e.s)e, + v(ensdey + w(ens)e, (3.1)

The Fourier representation for the body and shock shapes suggest that the

veloctity components, pressure, and density can be expanded in the follow-

ing forms, valid outside the vortical Tlayer adjacent to the body surface

(for a = 0):

u(e,¢) = uo(e) + su1(e) cos 24 + O(ez) (3.2a)
v(8,4) = vo(e) + ev](e) cos 2¢ + O(sz) (3.2b)
w(8,4) = ew, () sin 2¢ + 0(?) (3.2¢)
p(e,9) = po(e) 3 ep](e) cos 2¢ + 0(52) (3.2d)
0(8,0) = o, (8) + e (8) cos 20 + 0(c?) (3.2¢)

The lowest-order terms, with the subscript naught, pertain to the basic

circular-cone solution, which is presumed known.

3.2 Free Stream Normal Velocity at the Shock

The free stream velocity in spherical coordinates is given by
-b ~ ~
v o=V, (:cos o e -sino ee] (3.3)

At the shock, 8 = es =R - eg cos 26, we have to first order from

cos (eg cos 24) ~ 1 , sin (eg cos 2¢) ~eg cos 24

il _
v, =V, [{cos B + €9 sin B cos 24} e,

- {sin B8 - €g cos 8 cos 24} ée * O(ez):] (3.4)
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Using equation (2.10), we find the normal velocity at the shock to be,
to first order,

->

Vm-ﬁs = -V sin g + gV _cos 8 cos 2¢ + O(ez) (3.5)

3.3 Downstream Pressure at the Shock
The shock jump conditions give for the pressure ratio across the

shock the well-known relation

o]
a1 2y (wl
- 1+ -y (Mn ) (3.6)

for a thermally and calorically perfect gas. Here y is the ratio of
specific heats, yvscp/cv, and Mn = V’m-ﬁ/a°° is the normal free stream
Mach number, a_ being the free stream speed of sound. Substituting (3.5)

into (3.6) yields

p
S o142 (k% -7y e B2 =
5 1+ Ja7 (Kg = 1) -e 57 Kgg cot 8 cos 26 + 0(c”) (3.7)

where KB = Mm sin 8.
Equation (3.2d) for the pressure evaluated at the shock reads

plogss) = By(8) + epy(og) cos 26 + 0(c?) (3.8)

Transferring this value to the basic unperturbed shock by means of a

Taylor expansion yields, to first order,
dpo 2
p(8gs0) = py(8) +e |:- [%—Lg + p](e)] cos 2¢ + 0(e°) (3.9)

Identifying the first-order perturbation terms in (3.7) and (3.9) leads

to the shock boundary conditions for the perturbation pressure

(8) d
L =_4i gKg C0t8+9- [.._pﬁ]

o = . (@ ), s

For the undisturbed conical flow, the pressure gradient can be evaluated

in terms of the velocity gradient. Hence we have

U s




-

dp dv_y
= 0
{HE%L o V_sing [ya cos B + \33'15 ] (3.11)

Thus, alternatively, the pressure boundary condition can be written

pi(8) = 0.9 Vi sin 8 coss [%i% + {[g;gis //Vmcosa} :1(3.12)

The derivative (dvolde)8 can be evaluated in terms of the density ratio

across the shock, as shown in the next section.

3.4 Downstream Density at the Shock
The pressure ratio across the shock is given by

(vy~1) Mﬁ + 2
z2 — (3.13)
So(y) W
Expanding this expression analogously to that for the pressure, we obtain

°
8

O

the shock density to first order:

)
== +¢eg, cos 2% + O(ez) . (3.14a3)
Pg o 1
where . o (y-])Kg +2 5. 1863
By @ . ;
0 DO(B) (y+1) ﬁz
3 .
& = 2g cot B[F;o FT] (3.14c)

An explicit expression for p](B) is not needed. It can be shown from the

basic cone solution that
dv
- . o=t
[ae—]e V_cos B[:Z = ;°] (3.15)

3.5 Downstream Velocity at the Shock

The velocity components immediately downstream of the shock are ob-
tained from the governing conditions on the normal and tangential compo-
nents. The normal components of the velocity is governed by the mass con-

servation equation:




. ——

h fy At

T P - s
(Ven)g = == (V ong) (3.16)
S

The right side is determined to first order by means of (3.5) and
(3.14):
o 2
(V-n)s = - govwsin B + sV”(sog cos 8 - &, sin g8) cos 2¢ + 0(e“)
(3.17)
The left side of the previous two equations is determined to first order from
(2.10), (3.1), and (3.2) as
- 2
(Ven)g = v (o) + ev,(s.) cos 2 + O(e") (3.18)

Transferring this value to the unperturbed shock yields
== dv
o [ 0 2
(Ven) = v (8) +'eLy](B) = gt ’ cos 26 + 0(e°)  (3.19)

Comparing equation (3.17) and (3.19) leads to the following results:
vo(c) == g N, sin g (3.20)

dv
= : 0
V1(B) Sie Elvms'm B+g [:EovaOS B+ [ae—] ] (3.21a)
B

Utilizing (3.14c) for g now gives
dv
_ 2(Y-1) o) \
v](B) =g [{ +] & } V cos 8 + [Hﬁ—j ] (3.21t)
B

The other two velocity components at the shock are determined from
conservation of the tangential components:

- >

v x B, VS X n (3.22)

Substitution of the first-order expansions and transfer of the conditions

to the basic unperturbed shock yields

uo(B)
u](e) =g V_sin B(l-so) (3.24)

V_cos 8 (3.23)




wy(8) = - 29V _(1-¢ ) (3.25)

The needed boundary conditions at the shock have now been specified.

3.6 Surface Boundary Condition
At the body surface, g = 8 = 8§ = ecos 2¢, the normal velocity must

vanish:
>

(Ven), = 0 (3.26)
By means of vector analysis, we find the unit outward normal vector on

the elliptic cone surface to be, to first order,

-~ -~ 3 - 2
n, =e-B3InB oy o(d) (3.27)

Substituting this expression and the velocity expansions into (3.25) and
transferring the boundary conditions to the basic circular cone surface
leads to the surface boundary conditions

vo(s ) =0 (3.28)

¥

d
v,(8) = [Fe£J5 (3.29)

Equation (3.28), of course, is the tangency condition for the basic cone
problem, and equation (3.29) is the surface boundary condition for the
first-order perturbation. Rigorously, we should have obtained (3.29) by
matching the outer expansion with an inner expansion for the vortical
layer adjacent to the cone surface. Such an analysis shows that equation

(3.29) is indeed proper [14,15].

D
e T g
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4, PERTURBATION EQUATIONS

The pressure, density, and velocity are governed by the equations of
change for mass, momentum, and energy, plus appropriate equations of state.
Here we assume the flow is inviscid, nonconducting, steady, and behaves
as a thermally and calorically perfect gas. We wish first to obtain ex-
pressions for the pressure and density perturbations in terms of the
velocities, and then finally to obtain a single equation for only one of

the perturbation velocity components.

4.1 Energy Equation
For steady flow, the energy equation can be expressed in terms of
the entropy, s, as

V.grad s = 0 (4.1)

Thus the flow on either side of the shock is isentropic, that is, the
entropy along a streamline is a constant. Of course, the uniform flow
upstream of the shock is homentropic since the entropy is the same on
every streamline before it passes through the shock. If the entropy is

expanded in the form
$(8,6) = s,(0) + esy(8) cos 2o + 0(c°) (4.2)

then expansion of equation (4.1) leads to the result that So is a constant
and that S is also a constant. Thus the zeroth-order flow past the basic

cone is homentropic downstream of the shock. Since s, is a constant, the

1
first-order entropy perturbation depends only on the azimuthal angle ¢.
This result is not valid on the body surface because the body surface is

a stream surface that has a constant entropy, since grad s is a vector that
is perpendicular to the surface s(9,¢) = constant and is also perpendicular

to the velocity V which is tangent to the body surface. Thus expansion
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(4.2) is not valid in a thin layer, called the vortical layer, adjacent
to the body surface. Only the pressure and azimuthal velocity are uni-
formly valid across the vortical layer.

From the thermodynamic state relation for a perfect gas

ds .40 . % (4.3)

£
c, P o

we can deduce that the first-order pressure and density perturbation

satisfy the relation

P](S) p](e) S]
o 0 R ) constant (4.4)
o\Y! 0 v

Another relation between the pressure and density perturbation can
be found from energy considerations. Since the uniform flow upstream of
the shock is homenergic (constant total enthalpy) and homenergic across
the shock, it is also homenergic downstream of the shock. Thus we have

for a perfect gas

Ps
o §.+ L s, = constant (4.5)

Substituting the perturbation forms (3.2) into this equation and extract-

ing the first-order perturbation yields

pi(e)  oq(e) oF P
W - W 2 o = b—o~ (uou.l +* VOV]) (4.6)

This is a relation between the pressure and density perturbations in terms
of the velocity perturbation.

Equattons (4.4) and (4.6) can be solved separately for the pressure
and density perturbations. We obtain

i po(uou1 i vov1)

p](e) = azﬁ + poF] (4.7)
0
- e — T M.
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Py(6) = = o luguy + vovy) * BF; (4.8)

where ag(e) z ypolpo is the speed of sound squared in the basic unper-

turbed flow, and

¥ $H

F.l = m = constant (4.9)

v

The pressure and density perturbations are thus determined in terms of

the velocity perturbations. The constant F] can be obtained from the

shock boundary conditions. Thus we obtain

p](B) P (B) i

. 0
T T | uy(8) () + vg(a) vy (e) |

vg V2 sin 8 cos 8 (1-5,)%/a2(8) (4.10)

4.2 Momentum Equation

The momentum equation for inviscid steady flow is

o [E] i ] e, (@.11)

where & = curl V is the vorticity vector. For the vector quantities let

VeV +eb 4 0(e2) (4.12a)

5 o=+ 0(2) (4.12b)

where 51 = curl 71 and the sphericai components of the first-order pertur-

bation velocity V] can be ascertained from equations (3.2). When the
perturbation expansions are substituted into equation (4.11), the first-

order perturbation equation can be extracted, and it is
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2
o -> 2 -)-=-
(pjc0s 24) @ &-J + pov(Vo-v]) °ovo X % v(p,cos 20)
(4.13)
The first-order vorticity perturbation has the components
_ sin 2¢ d_ .
91,'rsfne[de (w]s1ne)+2v]:[ (4.14a)
L oostmagr F .
Q]e g L?UT + w sin ¢ (4.14b)
- cos 2 cos 2 ¢ _ __l
o - [1 - (4.14¢)
We also have
Vo x By = elvgey ) - e (ugay ) +e (0 o, ) (4.15)
¢ ¢ 8 r
From equation (4.13) it can be determined that
: > - TN '.
(V° X Q])-er =0 (4.16)
It follows from (4.15) that Q = 0, and hence that
¢
du1
V-I"'ae—- (4.]7)
Thus equation (4.15) reduces to
> o 7 ,
V0 X Qq = e¢(uoﬂ16 vosz1 ) (4.18)
r
The ¢-component of equation (4.13) can be written as
P sin 2¢
u°Q1e ~ vonlr =-2 L.;;-+ ugu; t v v]‘J *STh & (4.19)

The pressure perturbation py can be eliminated by means of equation (4.8),

\ and we get 5
0 ]e o'l Y r sin @ i
r
|
i
> ; = -v-n"v-r-— T - T - — "“*I-r
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where ag(e) = Ypo/po and F1 is a constant given by (4.10). By means of j
i
(4.14a,b) we can further rewrite (4.20) as fi
d 2u. + w.sin + 2u, + W.sin g | = Eil 2(e) ;
L e Bl R S s T % |
(4.21)
Introducing the integration factor
]
:rf"_O]:[
I(8) = exp b [ v, de . (4.22)

we can integrate equation (4.21) and obtain

. 2F, ]eagl
Zu] + wisin o = i I —v;— de (4.23)

The constant of integration vanishes by virtue of the chock boundary condi-
tions (3.24) and (3.25).
Equations (4.17) and (4.23) give Vi and Wy in terms of u; . It remains

to find a single equation for u].'

4.3 Continuity Equation f
Mass conservation is described by the continuity equation

div(oV) = 0 (4.24) |

When the perturbation expansions are substituted into this equation and ,

the first-order perturbation extracted, we get

> > _ ,
div (p1COS 20V + poV]) =0 (4.25) L

With the basic-flow result div(péV;) = 0 accounted for, this equation %

can be rearranged to read §

0,COS 26y  V §

div vy = - Vo-v[‘—-——] - Lo, (4.26) :

o o |

]

- s : o o e 4»;.
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If it were assumed that the density varies so slowly that it is approx-
imately a constant, then the right side of equation (4.26) can be set
equal to zero as an approximation, and a relatively simple equation for
7] ensues. (The right side does vanish at the body surface,s= 6 .)
This so-called constant-density approximation leads to remarkably

accurate results for the basic-flow solution and for the flow past a

ctrcular cone at angle of attack [12,13]. These constant-density approx-
imations were justified a posteriori by comparison with extensive numer-
tcal tabulated results. Such comparisons are not so available for the
elliptic-cone problem of present interest, and hence we must devote
more attention to the terms on the right side of equation (4.26).

In equation (4.26), let us now eliminate p](e) by equation (4.7)

and utilize the following basic-flow results:

2 —
% dog il 4P, O EEQ SR F&l (4.27)
°0 8 o de vy-1 deé de (2 X i

Equatton (4.26) can now be expanded and written in the form

dv 2(2u,+w, sin 6)
] el e o o
o — L sin o sin 6
where 2 (4.28) ;
v
Ale) = = (4.29)
a
0
B(e) = tan 6 — [u + W] { 2 + (y-1) —f} (4.29b)
a a i
0 0 !
v2 u dv %
C(e) = 4}{ 1+ (v-1) 5 [ u + %—] } (4.29¢) !
ag ag i

T




The factors A, B, and C in equation (4.28) are variable coefficients,

and they stem from the right side of equation (4.26). At the cone sur-
face 8 = § , the factors A, B, and C all vanish since v°(5 ) = 0. At

the shock surface 6 = g, the factors A, B, and C take the values

2g
AB) = T - RCa I (4.30a)
B(g) = 1T - go(Y_ﬂ' ’ (4.30b)

-1 2
£ -2 X< cot“p
4 Y+ s (4.30c)
(y+1) - EO(Y'])

c(s)

where the undisturbed shock density ratio, 50,15 given by (3.14b). In
the hypersonic limit, KB ==and A(8) takes the value (y-1)/2y. Thus

for vy = 7/5, A(B) = 1/7 for KS = o, For hypersonic flow it is thus safe
to neglect A(e) compared to unity. Since A(eo) = 0, it is thus reason-
able to neglect A(e) always except perhaps very near sonic conditions,
for which A(B) = 1 when KB = 1. Likewise C(8) is small compared to

(2 -4 csc? g8) in the coefficient of u; for all values of KB' Thus C(8)
should be negligible in general since it also vanishes at 6 = § . The
factor B(g) varies between (y+1)/y for KB = » and 2 for KB = 1, and thus

apparently should not be neglected compared to unity. Moreover, the

EBWDE:

factor (1-B) changes sign between the shock and the body. On the other

hand, if A, B, and C are all neglected, the resulting differential

B

equatton still behaves properly at the body surface since A, B, and C
vanish there anyway. In addition, the resulting second-order differential equation

must satisfy the two boundary conditions for u1(8) and v,(8) at the shock.

<




DV

Thus, even though A, B, and C be neglected, the resulting solution
should behave properly at both sides of the shock layer, and presumably
also in between. As mentioned earlier, neglecting A, B, and C yields :
good results for the circular cone at angle of attack.
Even though we intend eventually to obtain an approximate solu-
tion by neglecting A, B, and C, we can justify the results still further
by recasting the differential equation as an integral equation. Replacing

2 by (4.17) and Wy by (4.23), we can rewrite equation (4.28) as

2 4F] H (e)
uj + cotous + (2 - desc” o Juy = - —§_';:;2_ + Hy(e) (4.31)

where 6 ag I
< X e

o) = 1 | g o (4.32a) J

B |

H1(e) = Auj + B cot 6 ug + Cu, (4.32b) 1
When H_ and H, vanish, a solution to equation (4.31) is u, = esc? s. |

This suggests the substitution

g =Sk - (4.33) fz.:

sin 6 i
Equation (4.31) can now be written
4F Ho(e) H](e)

Ca® . o A ekl + (4.34)
lsinae} Y sind e sine

Two integrations yield

X(e) = X(g) + XT(gl J sine do (4.35)
sin B 8 ]

W——— @

4F] 3 H (9)
- — J [sin 8 J de] de +
e 4 sin e

[}1n eI T—EiEF de
B

s1ne ﬁ
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; X(8) = u,(g) sin’
=gV, sin8 (1 -¢,) (4.362)
X'(g) = ins | |2 - 3¢ | v cos 8 + EZQ
BY =8 SR | Ly - 96,0 Y @ ), (4.36b)

When X(6) is known, the velocity components are determined by

uy (6) X(0)/sin® 8 (4.37a)

v, (0) E'(e') - 2X(o) cota]/sinz 0 (4.37b)
2F
(o) = [ 2u(e) + L (@) ]/ stn o (4.37¢)

The shock eccentricity factor g is determined by satisfying the surface
boundary condition (3.29) and then solving for g. Equation (4.35) is an
P integral equation because the unknown function X(8) also appears in the

t functton Hl(e)'
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5. APPROXIMATE SOLUTION FOR
HYPERSONIC FLOW

5.1 Basic Cone Flow Approximations

For hypersonic flow in the 1imit M _>~and sine ~0 such that the

combination K = M _sin o remains finite, the basic cone flow can be approx-

imated accurately by [10,11]

ug(0) o sin® & [:sinz 8 4 1n [sin2 s]‘] (5.1a)
V. 2 sin2 § sin2 8/ -

v _(e) N

S—=-sino [1 - S—"lz—S:[ (5.1b)
® sin @

and the relation between the shock and body angles is given by

sing . /E‘- I i (5.1c)
sin § 2 (Mwsin 5)2

Let us now restrict ourselves to small angles such that sin 6=6 and

neglect second-order terms in (5.1). Then we get

u
o .
V: = ] (5.2a)
v 2
0 . $
V: * -9 [1 - gz ] (5.2b)
. /AL
s 5 + K7- (S.ZC)
8

where Ka = M 3§ is the hypersonic similarity parameter.

5.2 Evaluation of the Integrals

With the approximations (5.2a,b), the integrating factor I becomes
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1/2

1o [;E;_-E;:[ (5.3)

In the evaluation of the function Ho(e) given by (4.32a), the speed of
sound squared ag(e) varies only by a few percent across the shock layer.
k Hence we replace it by ag(s), and the function Ho(e) becomes

2
a_(8) [2 52
Ho(e) = sw { 1 - %2—-—6—2-} (5.4)

We then obtain

8 2 R
Ho(8) Aok a (8) /6% - & 1l & 1 -18 -18
5 6= 3y L jT—E" e 160 T -008 =
. 8 © 6 g = 8 s/ 82_62
(5.5)
) ) (s} () »
H (8 a (g
3 "o /ez =8 5 2 8
8 B" -8
B B
4 2 2
6 A 5 B S R |
+ (cos B-cos e}+—-—+3 8 B
28 VB =6

5.3 Approximation for the Velocity
The first approximation solution for the integral equation (4.35)
is obtatned by neglecting the integral involving H](e), which is the same

as omitting the factors A, B, and C in the original differential equation.

We thus get
u(o)=.x_(_el.+ X'(8 (94'84)"'3[ _2__2.6 e [2_6_2_}
1 92 4876 2 / 85 -6 6 392
2 2 2
+ —7—9—-— [cos"‘| g—- cos™! %] + -B—-z + 6——2 - 1:[ (5.7)
v 26/82 . 52 66 36




v(e)=-2xﬁ +X'B [_9_ +.§] + f [l/e = 8 [l+.§.2_]
1 )3 -l g WE T2 T
2 2
) [ 158 15 8 8 ]
+ cos~ = - cos - - — (5.8)
) ) P | 3
26/ 8% - 62 ge”

2 2 2
- _ 2X(8 X'(8 4 4 1 /6 -8 1.8
w](e) -_é_)_-;ég%.(e -5)-f1 [6/;2___7 [-6 __2_]
2

C -6 36
+ g [cos1§-cos']§]+8—§+£§] (5.9)
——— 5
26/ 6% - s 8" 19
where
2
- 2F.a"(B)
& 10 = ; ) 2
Fy W 29V sin 8 cos 8(1 - £ )
= - 2qv 8(1 - £,)° (5.10)
X(8) = gV g°(1 - &) (5.11a)
dv
Al agit | e el
X'(8) = g8 |: [YH 350] v+ [de ]s] (5.11b)
-2 2
- Lo s? [0 - gylen) ] (5.11¢)

Expression (5.11c) is the approximation consistent with the velocity

approximation (5.26b), that is,

dv
@

g v°[1 + éé] (5.12a)

s -V (2-¢)

B8

(5.12b)
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(5.12¢)
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5.4 Shock Eccentricity Factor
The shock eccentricity factor, g, can now be determined from the

condittion

dv
R | P
v, (8) [de ]5 2v (5.13)

-16
Bcos - 3 3
%=(1--02{___L__%-3_§}+(1-5)B_3
2/32 * 62 & :
2 170 v+l R 53 '
Denoting the basic-cone shock-body ratio by
gube L. L (5.15)
&  F 2 K2
5
we then get
-1 1
3 cos -
l=_].3.[: °+%(06+02)+304-0 -5] (5.16)
. 6o /az-’l f

The shock eccentricity factor, g, is plotted in Fig. 5.1 as a
function of K6 for y = 7/5. For K6 + 0, which corresponds to the limit
of linearized theory, the eccentricity factor tends to zero, g - 0, that
is, the shock tends to a circular Mach cone. For the limiting hyper-
sonic flow, KG-»w, g approaches the asymptote g = 0.955, and the shock
tends to embrace the elliptic cone body. The shock, however, is always

less eccentric than the body. When KG - and y > 1, then » ~ § and
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g - 1, and the shock embraces the body, in agreement with hypersonic
Newtonian theory. The angle-of-attack shock eccentricity factor, 3,

obtained in Section 7, is also shown in Fig. 5.1 for comparison.

5.5 Shock-Layer Velocity Profiles

The first approximation for the velocity Uy given by equation (5.7),
is plotted in Fig. 5.2. The hypersonic similarity form gives u]/vwd as
a functionof 6/s, Ks,and y. Because the thickness of the shock layer
varies as a function of Ka’ the shock layer is normalized by means of the

variable

g =2 . (5.17)

N 4"
The body surface corresponds to 6 = 0 and the shock surface to s = 1.

At the body surface u]/VQG is insensitive to variations in Kd, having
approximately the value unity. At the shock surface, u]/vws is quite
sensitive to variations in Ka' In the hypersonic limit Ka = », u1/Vw6
increases only slightly from the shock to the body.

The velocity perturbation v]/V°° is shown in Fig. 5.3 as a function
of ;, vy= 1.4, and various values of Ks' The variation of v]/V°° across
the shock layer is analogous to the variation of u]/VwG, except that
v]/vcn is equal to -2, as imposed by the boundary condition (5.13).

The azimuthal velocity perturbation w]/Vw is shown in Fig. 5.4 as
a function of g, vy = 1.4, and various values of Ks' At the shock sur-
face, wl/Vw increases as K5 increases. For Ks = 2, the variation of
w]/Vm across the shock layer is very slight. At the body surface, w]/V°°

decreases as Ks increases. This is shown also in Fig. 5.5. When

K6 -+ 0, w.|(<5)/Vm + -2, which is in agreement with linearized theory. 1In
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Azimuthal Perturbation Velocity Components, y = 1.4
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the hypersonic limit Ks > o, w](s)/v°° becomes asymptotic to the value
0.659 for y = 1.4. The corresponding angle-of-attack contribution,

Q“s)/vm, discussed in Section 7, is shown in Fig. 5.5 for comparison.

5.6 Evaluation of the Approximate Analysis

Let the first approximation for the integral equation (4.35) be

(0)
1

denoted by u, ’, which is given by equation (5.7). Then the integral

equation (4.35) can be written, for small angles, as

u = u§°)+ u%c) ) (5.18)
where ] ] (o)
; H. (s
(c) R J 3 1
Uy (8) = ;??FTTJ sin” @ TR de} de (5.19a)
B B
) )
H,(8)
o P [ [ 217 o g0 (3.19)
) ) ) 9 )
B R
H](e) = Au{ + B cot o ui + cu, (5.20)

Consider now an approximate evaluation of the correction function

ugc). Towards this end we utilize the well-known convergent iteration

procedure for Voltera-type integral equations. The first step is to

substitute the first approximation u%o) into H](e) and then evaluate

ugc)' Expression (5.7) for ugo) is fairly complicated and does not

lend itself to a simple analytical evaluation of ugc). Figure 5.2 shows,
however, that uso)(e) can be approximated by the simple formula

"§0) 5

T {5] G(G’Ks) (5.21a)

where G(e,KG) is a slowly varying function of 6 and Ka’ being approxi-

mately unity. It now follows approximately that

i@ 0

g I

o

. F%3 G (5.21b)

8
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1
!
|
ii-.*hsr — =

wl® 3
ekt (5.21c)

since G is nearly a constant. Again it may be verified that expression
(5.21b) gives a reasonable approximation to Fig. 5.3.

Substitution of expression (5.21) into (5.20) and than (5.19b)

yields
8 0
u#c)(e) = u%o)(e) J o3 [ [ 9% - Z%_ 93:lde]de
8 B8
{5.22)

In the evaluation of A, B, and C, given by equation (4.29), we set
ag(e) = ag(a) since ag(e) varies by only a few percent over the shock
layer. With the approximations (5.2a,b) we now get, for small angles,

and with z = 8/6,

2
A = N2 [1 - 1—2] (5.23a)
Z
2
2 e 3 e fy  1L1°7
B =N [1 22] [2+(Y1) Nz [1 Z—Z] | (.23b)
2 2
2 z 1
C=-~(y-1)N 1 -—= 5.23c)
Y 67— [ 22] (
Where V2 2
(<]
- 2o (5.24)

; a2(8)  (o7-1)(2074y-1)

where o = g/6, given by (5.15). With the formulas (5.23), the integral

in (5.22) can be evaluated. We obtain




ey L e o
PIERRrS
+ (y-1)N ‘l:z Tn [EZ’-} - ("2522) [3 “ ;%‘z’z} (5.25)
e [i‘z : ;_—04 j 2:7;05 J u]sos ' 16]7424 | :[1

At the shock, z = o, the correction vanishes, ugc)(s) = 0. The largest
correction occurs at the body surface, z = 1. Then we have

(c)
uy ' (8) 2
1 (6"-1) [ 13 7 5 ]
2= 4 1n o + 3+ =, + —, - =
N ( }(6) 4 { 302 304 306

U
(5.26)

2
(o"-1 31 7 11 1
+ (Y-] N[:Z]n ___L 3+ + — - — 4+ —
(r-1) 8 602 60’4 606 20

The correction factor ugc)(s)/u§o)(6) is shown in Fig. 5.6 as a
function of K6 and vy = 1.4. In the hypersonic limit, Kd = =, the cor-
rection factor is approximately -0.0073, and thus the error in the
first approximation is about one percent or less. As K6 decreases, the
correction becomes slightly more negative, being approximately -0.015
at Ka =1.7. As KG decreases further, the correction factor increases
from the minimum negative value and becomes zero at K5 = 1. Further
decreases in Kc give a rapid increase in the correction factor, becoming
0.75 in the limit Ks = 0 which corresponds to linearized theory.

In the hypersonic flow range, we can expect the first approximation,

)

obtained by neglecting u]c

, to be very accurate. In fact, this is true
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when K6 X 1. When Ks < 1, the first approximation is less accurate.
We note, however, that the correct 1imiting results for K(S = 0, which
correspond to the limiting case of linearized theory, are recovered.
This is true because the perturbation Uy itself vanishes when 6 - 0
and also because the surface boundary condition v](s) = -2V°° is en-
forced on the first approximation itself (which produces the first
approximation for g). The surface boundary condition is always ex-
actly enforced. Thus, although the linearized limit Kc =0 is re-
covered, the approach to the linearized limit is in error. Because
the results are correct at K5 = 0 and very nearly correct at Ks =
the error in the range 0 < K6 < 1, while greater than for K(S >l

is less than that indicated in Fig. 5.6.

The above observations are born out by the results of Doty and
Rasmussen [13] for hypersonic flow past a circular cone at angle of
attack. Their approximate analysis was analogous to the present analy-
sis, but the results could be compared extensively with well-known
tabulated results. The agreement was very good. Thus, whereas ex-
tensive tabulated results for the elliptic cone do not exist as they
do for the circular cone at angle of attack, the above error analysis
and the experience of Doty and Rasmussen justify confidence in the

present analysis.




6. SURFACE PRESSURE ON THE ELLIPTIC CONE

6.1 Surface Perturbation Pressure Coefficient

The pressure on the surface of the cone is given by (for « = 0)
1. 2
p(6.s¢) = pye.) + epy(e,) cos 2¢ + 0(e") (6.1)

where

8. = & - ecos 24 + O(ez) (6.2)

Transferring the expression (6.1) to the basic cone gives
dp
s e 2
p(5g8) = po(8) +e[py(6) = (2] | cos 26 + 0(d)
3 (6.3)
At the cone surface, the gradient of the basic pressure, Py vanishes

since vo(s) = 0, that is,

dp dv
&qua * - oo(s) vo(s) [:uo # 332 } 5= 0 (6.4)
Hence we have
p(5.56) = B(8) + ey (s) cos 26 + 0(c’) (6.5)

The pressure coefficient, Cp, is defined by

Thus we can write

where
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e = EBlE;l (6.8b)
P Yp_M

@

The pressure perturbation is given by equation (4.8), and since vo(s) =0,

we have
Py(8) = - o (8) u (8) uy(6) + p (s) F, (6.9)

Using the previous results for the first approximation, we obtain the

hypersonic similarity form

Ty s a2(8) u,(s) 1 o
S Eg poo 03 52(6) VQS k
0
where
po(5) y Y 2 [Cpo
AR L L?] (6.11)

and N is given by (5.24). From an analysis of the basic cone flow

[11,12,13] we have

a2(6) (y-1) 02 [ In 02 + ]—2 - 1]
[ 1P 5 5 2 (6.12a)
aoz(s) (6% = 1)(26° + v - 1)
C
Po 02 1n 02
—2—= 1+ -—2——]— (6.]2b)
§ g =

Figure 6.1 shows Cp /S8 plotted as a function of Ks for v = 1.4.
1

For K. = 0, t §

or K, we ge Cpl/

-2, in agreement with linearized theory. In

the hypersonic limit, Ka 2 o, Cp /& approaches the value -3.811. Thus
1

in the hypersonic limit, the surface pressure coefficient approaches

the form

2

c
5 =2.094 - 3.811 % cos 26 + 0(c") (6.13)
§

N Ty G W progee Py
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oy o el e s e A A S A
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Figure 6.1. Perturbation Pressure Coefficient on the Body Surface
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6.2 Comparison with Experiment
Surface pressures were measured on two different elliptic cone
models, each at free stream Mach numbers 3,09 and 6.0, by Zakkay and

Visich [16]. The geometric properties of these models were as follows:

Model I Model II
a = 0.2555 a = 0.2256
b = 0.3562 b = 0.4308 .4034
e = 0.320 e = 0.523
8 = 16.36° 6 = 15.56°
m m
e/§ = 0.155 e/§ = 0.266
§ = 16.64° = 0.2904 rad § = 16.28° = 0.2841 rad

These two models have the same cross sectional areas for the same sta-
tion along the elliptic-cone axis. A circular cone with the same cross
sectional area has a semi-vertex angle of 16.79°. The experimental

data are compared with the results of the present analysis and also
with the analysis of Martellucci [ 5]. Martellucci used an extension of
the so-called linearized characteristics method. This method essen-
tially uses the first-order perturbation equations utilized in the
present analysis, but takes a finite number of terms in a Fourier

series expansion to represent the shape of this surface. Martellucci
used the first six terms. (In view of the fact that the Fourier
coefficients for an ellipse decrease in magnitude like powers of the
eccentricity, e, as seen in equation (2.6), it would seem that a higher-
order theory should be utilized to accommodate the higher-order Fourier

coefficients. In this sense, the linearized-characteristics method
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does not seem to be entirely rational, at least for the ellipse.) The
perturbation equations were integrated numerically by Martellucci,

but the general results corresponding to the present analysis were not
obtained.

Figure 6.2 shows the pressure distribution on one quadrant of
model I for the elliptic cone for M°° = 6.0, which corresponds to
KG = 1.747. The present results agree very well with the data on the
major and minor rays (¢ = 90° and 180°), but give pressures that are
too large in between. The overall agreement is good considering that
the perturbation theory should be strictly valid when ¢ << 6§, and this
"condition is met only marginally. The results of Martellucci give
s1ightly better’ agreement with the data, but probably not enough to
justify the numerical computational effort.

Figure 6.3 shows pressure-distribution data on model II for
M_ = 6.0, which corresponds to K5 = 1.724. This model is substan-
ttally more eccentric than model I, and the condition e << & is cer-
tainly not satisfied. Nevertheless, fairly good agreement with the
present analysis definitely represents the overall trends of the data.
The results of Martellucci do not appear to give substantially better
overall agreement with the data.

Figure 6.4 shows the pressure-distribution data on model I for
the smaller Mach number, M°° = 3.09, for which K(S = 0.900. Again the
present results give good agreement with the data on the semi-major
ray, but the data are lower otherwise. The overall agreement does not
seem to be quite as good as for the higher Mach number M_ = 6.0,

which might be partially expected on the grounds that the approximate
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analysis is less accurate at Ka = 0.900 than for Ks = 1.747. The
results of Martellucci give a little better agreement with the data
between the major and minor rays.

Figure 6.5 shows the pressure-distribution data on model II for
M = 3.09, for which Ks = 0.888. The agreement with the present anaiy-
ses is fairly good near the major and minor rays, but poor in between.
Again, for this large value of eccentricity, higher-order perturbation
terms are probably required. The linearized-characteristics method
used by Martellucci picks up higher-order harmonics in Fourier repre-
sentation of the ellipse and thus shows somewhat better agreement with
the data between the major and minor rays. In view of the large value
of ¢ however, there are probably higher-order perturbation terms that
are of the same order of magnitude as the higher-order Fourier har-

monics.

6.3 Drag on the Elliptic Cone

The pressure force on a finite-length elliptic cone is given by

F=- J J p(s.) n ds (6.14)
S
where S is the area of the slant face, and

8. = § - € COs 26 + 0(52) (6.15a)
nee -2e8i02 5 g2 (6.15b)
<] sin § ¢ *

dS = r sin 0. dr d¢ + 0(52)
tan ec 2
= ‘(R_S_C‘ dz d¢ + 0(e°) (6.15¢)
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p(ec) = po(s) + sp1(6) cos 2¢ + 0(52) (6.15d)

When the integration is carried out in the range 0 < ¢ < 2= and
0 <z < H, where H is the length of the cone axis, we get for the
cone drag
5 ML e 2
D = Fre, = p (s)A +0(c%) (6.16)
where

A= sz tan2 8 (6.17)

1s the base area of the basic cone of semi-vertex angle §. Thus the ,f
drag on the elliptic cone, ignoring terms of order 52, is the same as

the drag on the basic cone of semi-vertex angle § having the same length.
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7. ELLIPTIC CONE AT ANGLE OF ATTACK

7.1 Superposition of Results

e i

Let the freestream wind be inclined to the axis of the elliptic

cone such that the inclination angle, a, is measured in the x-z plane
shown in Fig. 2.1. Let the coordinate system remain fixed to the body
so that the z-axis is the axis of the cone. The surface boundary condi-

tions remain unchanged. The shock shape can now be represented by [12]

o, = 8+ af cOS ¢ - g COS 2¢ + O(az,ae,ez) (7.1)

where a is the eccentricity factor associated with angle of attack. We
assume o and ¢ to be small and of the same order of magnitude. Since

the first-order perturbation equations and boundary conditions are Tlinear,
the angle of attack problem for the circular cone can be superposed with
the elliptic-cone solution at zero angle of attack. The subsequent re-
sults for the circular-cone angle of attack problem were obtained by

Doty [12] and Doty and Rasmussen [13] by an analysis very similar to the
foregoing analysis for the elliptic cone. The angle-of-attack shock

eccentricity factor was found to have the form
-1
2
- 3+ 262 [3 5 5-(1:—;’)] - [ 0(02-1)”2:{ In [o + (02-1)1/2:{

7 =
5 - 2(1+0%) [1 + ‘:—1}] i [0(02-1)”2 ] n [c + (02-1)”2:[

(7.2)

where o is given by (5.15) as before. This function is shown in Fig. 5.1.
The first-order expansion for the flow variables outside the vor-

tical layer can be written as \
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u(6,9) = uo(e) + a31(e) cos ¢ + eu1(e) cos 2¢ (7.3a)

v(e,4) = v (8) + aV,(6) cos ¢ + ev, (o) cos 26 (7.3b) 4
w(o,0) = aW](e) sin ¢ + ew](e) sin 2¢ (7.3¢c) i
p(0,0) = o (0) + uS](e) cos ¢ + epy(e) cos 2 (7.3d) ?

%
Pa.s) = p,(6) + aby(e) cos ¢ + cpy(e) cos 24 (7.3e)

The variables with the tilde notation pertain to the angle of attack solu-

tion past a circular cone.

: 7.2 Pressure on the Body Surface

The pressure on the body surface is given by

p(ec,¢) = po(a) + a31(5) cos ¢ + sp1(5) cos 2¢ (7.4)
where i

t B (8) = - o (8) u (8)d;(s) + p () ¥ (7.5)

: Fpos+ 2s( - 90 - g )¥a(e) (7.6)

N

sl [£+03 Sge1 - T (7
UG 3 LA 5 /2 .
5 o] 2v0 -1

which is analogous to expression (6.9). In terms of the pressure coeffi-

cient, we have

+ &8p] cos ¢ + Cp, cos 2¢ (7.8)

where




2
Pi an P (8) p,(s) (1_"‘) (3) (6)
o o [ Y=g} :[ (7.9)

In the calculations of Doty [12] and Doty and Rasmussen [13], the ratios

po(s)/po(s) and aﬁ(s)/ag(s) were set equal to unity consistent with

their "constant-density" approximation. |
The angle of attack perturbation pressure coefficient given by

(7.9) is shown in Fig. 7.1 When Ka = 0, the limiting result of linear-

ized theory is recovered, 6 /s = -4. When K6 = =, the limiting hyper-

sonic value is ﬁ /8 = -4. 08;6 Near K(S = 1, there is a small dip in

the curve. As K6]approaches zero, there is a small overshoot in the

curve which does not occur in the exact theory. Over the range of Ks’

the value of Ep /8 does not differ greatly from -4. In the hypersonic
1
limit, KG ==, we can write

C
-%= 2.094 - 4.084 [g-] cos ¢ - 3.811 (%]cos 26 (7.10)
Py {

correct to first order in o« ande. Expression (7.10) indicates that a/$
and ¢/8 should be sufficiently small in order for the perturbation analysis

to be valid.

7.3 Comparison with Other Results
The present results for surface pressure at M_ = 6 and angles of

attack of o = 5° and 10° are shown in Figs. 7.2 and 7.3 for models I and II.

The results of Martellucci are shown for comparison together with the experi-

mental data of Zakkay and Visich for o = 10°, which is a large enough angle
of attack to make for a demanding comparison. The present results agree well with

Martelluci for both models for o = 5°, the worst agreement being on the leeward ray,

e— 2 g —_— -y, v - b L v s e 49..‘_... =
i ————
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Figure 7.1. Angle-of-Attack Perturbation Surface Pressure
Coefficient, y = 1.4




-5}-
¢ = 0° For a = 10°, the two results are in fair agreement for the small-

eccentricity ellipse, model I in Fig. 7.2, except near the leeward ray
of the elliptic cone. For the large-eccentricity ellipse at « = 10°,
model II in Fig. 7.3, agreement between the two results is good only near
the windward ray. For model II at o = 10°, the combined large values of
a/8 = 0.607 and /6 = 0.270 render the first-order perturbation theory

invalid, especially near the leeward ray where the separate perturbations

are additive.
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Figure 7.2. Comparison of Surface Pressure with Martellucci's
Results, Model I, M_=6, vy =1.4
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n Experimental Results of Zakkay and Visich for a = 10°
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Figure 7.3. Comparison of Surface Pressure with Martellucci's
Results, Model II, M_ =6, vy =1,4
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7.4 Normal Force on the Elliptic Cone

The normal-force on the cone is found to be

Fee = Cy o FMPA + 0(ef,e% ae) (7.11)

[}

>

where F is defined by (6.14), A = nHz tanza is the base area of the basic

cone of semi-vertex angle §, and o
B l.Eﬁl (7.12)
N 28 i

a
is the a- derivative of the normal-force coefficient.

The moment about the cone vertex is

M= - j J p(ec) r x n.ds (7.13)
S
Evaluation of this integral gives
lare 2 2
M= e, [CMua %-MmpmHA] + 0(a2,e2,ca) (7.18)
N
where : CP
(5 = _2. C e l___]- (7 ]5)
M 3 TN 3 s -
o a

is the a~ derivative of the moment coefficient.
For completeness, we can rewrite the drag on the elliptic cone,
(6.16), in terms of an axial-force coefficient. If the base pressure

is reckoned as P.s then we have

* ~
F-ez = CA %MEPQA + (az,ez,ae) (7.16)
where
e
Po) .2
C.=C =[ 0]5 (7.17)
A Tp, g2
T e | BN % PO S b 7 A

Nide
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and C_ is given by (6.12b).
P A

9 ¢, ¢
: 1 0 2
The ratios o and ;?_ depend only on Kc and y. They are in-

sensitive to K6 when Ka is large. Thus when Ks is large, that is, for
hypersonic flow, the main effect of the cone cross-section shape
is determined from 6. For slender cones (small em) we have from (2.3a)

and (2.8a) the alternative forms

vab [1 + 0(e?)]
b /T-e [1 + 0(e?)]

O
"

(7.18)

(2]
"

The cross-section area of an ellipse is proportional to the product ab.
Hence when the cross-section area is held fixed, the force coefficients
are independent of the eccentricity e when terms of order e2 are
neglected.

On the other hand, when b is held fixed, then § varies with the
eccentricity to the first power. The normal force and moment are
independent of é when KG is large, but CA decreases with increasing e

when b is held fixed. Thus the Tift-drag ratio increases when b is

held fixed and e increases.
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8. CONCLUDING REMARKS

General flow field results for the hypersonic flow past an elliptic
cone have been obtained, The results are valid for large Mach numbers
and small stream deflections such that the hypersonic similarity para-
meter, Ks z Mma, is fixed in the limiting process. The results are
more accurate for large K5 (KG 2 1), but the proper linearized theory
result is recovered when Ké > 0. The ellipse eccentricity factor, e, in
the analysis must be small in the strict sense that e/8 << 1. Comparison
with experimental results indicates that ¢/§ need not be very much less than
unity, but merely moderately less than unity, for acceptable engineering re-
sults. In addition, the angle of attack should be such that «/¢§ << 1
in the strict perturbation sense. An important feature of the analysis
is that the basic circular cone angle,§, has been well defined in terms
of the geometric properties of the elliptic cone.

The methodology of this analysis can be extended to other cross-
section shapes. Each term in a Fourier expansion of the cross-section
shape can be handled in an analogous manner and accurate, approximate
analytic results obtained. Strictly speaking, however, the cross-sec-
tion shapes should deviate only slightly from a circular cone in order
for the perturbation analysis to be valid. Moreover, successive Fourier
coefficients should not decrease in powers of the basic expansion para-
meter, for then corresponding terms of higher-order perturbations be-

come equally important.
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